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Abstract

This paper aims to enhance the econometric models mainly used by the financial

services firms to predict prepayments of fixed-rate institutional loans. Upon de-

ploying several model types for prepayment prediction on Euro-currency, fixed-

rate institutional loans between 2012 and 2020, we found that tree-based ma-

chine learning methods significantly outperform logistic regressions in predic-

tive powers. We recovered the expected inverse relationships between changes

in interest rates and subsequent prepayments. We also identified other driving

features that correlate with subsequent prepayments, like loan costs and changes

in business conditions. We ascertained the directional covariance of significant

features of non-linear inference models by means of a Shapley plot. Further, we

also draw inferences on the prepayment volumes in Euro amounts and timing

of prepayments.
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1. Introduction

While the academic literature is rich in research publications on residential

mortgages and consumer loans prepayment models, relatively little has been

published on institutional loan prepayments. Some of the few publications that

address institutional prepayment behaviors can be attributed to Cossin & Lu5

(2004) and McGuire (2008). During the periods of positive and relatively stable

interest rates, the focus on residential and consumer loans was aligned with the

economic priorities of most lenders. Indeed, early amortizations of institutional

loans were hardly conducive to adverse effects on lenders because unexpected

inflows of liquidity from institutional borrowers could be mostly deployed at at-10

tractive returns. The last decade marked by very low/negative interest rates in

the OECD has challenged this premise. Unexpected early prepayments of insti-

tutional loans had the effect of converting the economic value of such products

from “value creators” to “value destroyers”. The negative economic profitabil-

ity resulted from the unexpected inflows of liquidity that had to be deployed at15

unattractive rates while the tenors of the loans with attractive locked in margins

became unexpectedly shorter.

Our research is motivated by the emerging interest in modeling institutional

loans prepayment behaviors also echoed by the recent regulatory developments

under the Basel III/IV IRRBB (Interest Rate Risk in Banking Books) recom-20

mendations published by the Basel Committee for Banking Supervision in 2016.

In this paper we strive to explore the prepayment behavior of institutional oblig-

ors while concentrating on fixed-rate loans. We aim to test the results obtained

by previous researchers with respect to the prepayment sensitivities to changes

in the term structure of rates and other driving features on institutional loan25

data containing Euro-currency loans between 2012 and 2020. We commence our

analysis by using traditional econometric models such as logistic regressions as

employed by many previous researchers1. More importantly, we attempt to test

1See for example, Jacobs et al. (2005), Elul et al. (2010), and Agarwal et al. (2011).
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the tenet of insufficient predictive powers of such models on our dataset, which

is the main reason for the very modest set of behavioral models for institutional30

obligors in practical applications.

Above and beyond, we strive to deploy non-linear tree-based ML inference

methods in an attempt to improve the predictive abilities of statistical models

with respect to identifying early prepayments of fixed-rate institutional loans.

We decided to separate our research endeavors on institutional prepayments35

between fixed and variable-rate loans as the sensitivity to the changes in interest

rates is naturally different between the two cohorts. This paper focuses strictly

on the analysis of fixed-rate institutional loans. 2.

Motivated by the increased level of data availability associated with institu-

tional loans (associated with the growing level of loan securitization), we also40

strived to deploy tree-based Machine Learning (ML) inference methods in an

effort to ascertain relationships that could be conducive to modeling the pre-

payment behavior of institutional borrowers. In an analogy to the behavior of

mortgagors, who exhibit lagged prepayment behaviors to changes in interest

rates, we expected similar lagged prepayment behaviors of institutional oblig-45

ors. Our aim is to improve the predictive accuracy of institutional fixed-rate

prepayment models in an effort to enable the building of effective early warn-

ing mechanisms to predict prepayments subsequent to changes in market rates.

Lastly, due to the cumbersome explanatory abilities, especially concerning di-

rectional sensitivities of analyzed features of traditional ML inference methods,50

we augment this deficiency by means of a dedicated robustness analysis employ-

ing Shapley plots in an attempt to validate the derived relationships. We did

not employ neural networks for the classification task, since as far as we know,

they do not have a feature to analyze these relationships.

While we recovered the negative directional relationships between changes55

in interest rates and prepayment probabilities, we also determined a direct re-

2A behavioral analysis of variable-rate institutional loans prepayments is discussed in

Horovitz (2021)
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lationship between the cost of the loan to the customers and the prepayment

probabilities. Obligors belonging to the manufacturing industrial sectors are

more likely to prepay than borrowers belonging to other economic sectors, with

the least propensity of prepayment attributed to obligors belonging to the agri-60

cultural sector. Perhaps more importantly, the analyses supported by non-linear

tree based ML methods yield far superior predictive powers than the traditional

linear logistic regression methods.

From a practical implementation perspective, we envisage our analyses as

conducive to the potential development of early warning systems capable of65

identifying the most likely institutional fixed-rate loans to be prepaid upon

negative changes in interest rates. Hence, banks can inform their customer

relationship management to get in touch with the borrower who will potentially

prepay the loan.

We deem our results to contribute to an enhanced ability to perform liq-70

uidity risk management for commercial banks endeavoring similar analyses and

consequently, optimize economic capital in the financial system as mandated

by the Basel III/IV IRRBB recommendations, which were coined into financial

regulation in most OECD jurisdictions.

The paper is organized as follows: Section 2 presents an overview of the75

relevant literature and exhibits the gaps we aim to fill via this research effort;

Section 3 introduces the dataset and the features and presents the data trans-

formations; Section 4 explains the methodology applied; Section 5 presents the

key findings; Section 6 discusses the multiple robustness analyses deployed to

validate the models and Section 7 concludes the paper.80

2. Literature review

We concentrate our research on the exploration of behavioral features im-

pacting prepayments of fixed-rate institutional loans as we conject that the

driving factors of early institutional loan prepayments may differ from the well

researched factors driving mortgage prepayments. In addition, we notice that85
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the academic literature is currently heavily imbalanced between publications

on mortgage vs. institutional loan prepayments, in favor of the former. This

result can be attributed to two main factors: for one, portfolios of institutional

loans tend to exhibit lumpier distributions (in terms of size and prepayment be-

havior) in comparison with portfolios of mortgage and consumer loans, making90

the inference from the distribution of institutional loan prepayments less reli-

able and more difficult to analyze; secondly, for most of the period between the

1970s (when the behavioral modeling of prepayments emerged as an essential

branch of quantitative asset liability management) and the early 2000s, institu-

tional loan prepayments were by and large tiny in volume terms as compared to95

the loan sizes and the impact of the liquidity overflow resulting from them were

rather modest. Indeed, the overflow of unexpected liquidity resulting from insti-

tutional loan prepayments was typically deployed towards lucrative investments

at attractive returns. Even during periods of economic contraction, institutions

found means to deploy the unexpected liquidity injections at sufficient high re-100

turn. The recent decade marked by negative central bank deposit rates in OECD

economies and especially in the Euro-currency economic space has changed this

situation, whereby the unexpected liquidity injected from early prepayments

had to be deployed at unattractive rates (sometimes negative rates) with ad-

verse effects on lenders’ profit and loss statements. We will succinctly present105

an evolutionary taxonomy of the existing literature to date (with no pretense of

exhausting the vast volume of publications on the topic) while pointing to the

gaps we identified which we attempt to address in this paper.

One of the first models for rational mortgage prepayments is attributed to

Richard & Roll (1989). Given the apparent optionality features inherent in the110

prepayment profile, several authors attempted to value the prepayment option

as a function of the interest rate levels and the property values. Hilliard et al.

(1998) as well as Chen et al. (2009) conducted an approach based on a bivariate

partial differential equation with reference rates following a Cox Ingersoll Ross

equilibrium model and property values following a geometric Brownian motion115

model. Other authors reverted to traditional statistical models (especially ap-
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plied to consumer loan prepayments – for the reasons articulated above). For

example, Schwartz & Torous (1989) as well as Schwartz & Torous (1992) applied

a log-logistic hazard rate model on aggregated Government National Mortgage

Association (GNMA) pools and argued that the prepayment experience is con-120

sistent with the log-logistic representation. Their prepayment estimates were

subsequently integrated in a valuation model for mortgage-backed securities. A

simplified application of their model is the conditional prepayment rate/single

monthly mortality model developed by the Public Securities Association in the

US. The model was successfully used for decades to ascertain the prepayment125

behaviors of GNMA and Federal National Mortgage Association securitized

tranches and their respective bonds. Giliberto & Thibodeau (1989) also used a

log-logistic hazard rate model similar to Schwartz and Torous. Their contribu-

tion relates to the analysis of individual data as they added idiosyncratic obligor

variables to their model. These authors provided a theoretical framework for130

analyzing borrowers’ decisions. They show that an obligor’s wealth depends

on the economic gain from exercising the prepayment option. In particular,

they found that an increase in interest rate volatility slows down prepayments

because the obligor’s economic benefit depends on the value of continuing to

hold the option. However, their work falls short of representing adequately the135

behavior of obligors who prepay but do not move. Other authors attacked the

prepayment behavior (again, given the approximately Gaussian distribution of

prepayments – focusing on residential mortgages) from a valuation perspective.

Peters et al. (1984) examined the prepayment experience of a US nationwide

sample of conventional fixed-rate residential mortgages. Some 500 thousand140

mortgages were classified in 921 cohorts and used in an OLS linear regression.

They regressed the conditional prepayment rate on several variables, of which

the main ones included refinancing costs, the differential between contract and

market rates, obligor’s age and property size. The study found that refinancing

costs had the dominant impact on prepayments.145

Contemporaneously, Green & Shoven (1986) applied a proportional hazard

rate model to mortgage prepayments. Their model represented an improvement
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to the statistical estimation techniques exhibited above. The main value-added

represented the enhanced explanatory power of their stochastic variable used,

which they termed “lockin” – defined as the difference between the face and150

the market value of the mortgage expressed as a fraction of the initial prin-

cipal amount. To account for the property appreciation over time (the data

contained mortgages during a period of economic expansion in the US where

residential dwelling values increased almost at a constant rate), they adjusted

the initial principal amounts by a regional property value appreciation index.155

While Green & Shoven (1986) obtained very sturdy estimates of their “lockin”

variable, their model was still limited (especially for practical implementation

purposes) as they strictly focused on the evolution of reference rates without in-

cluding additional explanatory variables. As a result, prepayments attributable

to regional mobility, preference to deleveraging, divorce, or change in family160

size were not accounted for. A year later, Quigley (1987) expanded the Green

& Shoven (1986) model by including household mobility factors. Quigley showed

that mobility (and henceforth, related prepayment) is positively correlated with

household size and education of the obligors. The study was criticized due to

the instability of the coefficient’s sign relating to the borrower’s income. How-165

ever, a critical contribution of Quigley’s work is connected with his analysis of

the significance of the assumption relating to the proportional hazard rate.

While all contributions mentioned above concentrated on prepayments of

fixed-rate loans (also the focus of this research, albeit concentrating on institu-

tional borrowers), it must be mentioned that a few authors attacked the prob-170

lematic issues of finding explanatory models for variable-rate loans prepayments.

Some prominent contributions (also addressing residential mortgages, with ad-

justable rates) are of Cunningham & Capone Jr (1990), McConnell & Singh

(1991), Sanyal (1994) and Daniel (2008). While different in their respective

approaches, these authors found that full and partial prepayments are strongly175

affected by the amount by which the mortgagor’s highest interest rate level

attained over a prior period exceeds the current variable-rate applied to the

loan.
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It was only by the turn of the millennium when researchers attacked the

more convoluted issue of prepayments of institutional borrowers. Cossin & Lu180

(2004) published an article focusing strictly on corporate loans (but not loans

to financial institutions) while applying a binomial tree framework to derive

rational prepayment behaviors. McGuire (2008) has published a comprehensive

analysis of commercial borrowers’ prepayment behavior in the US. He found the

main drivers of commercial prepayments to be “refi ability” (obviously, strictly185

applicable to fixed-rate loans), seasonality and “improved business conditions”.

It is precisely the sparse contributions to institutional fixed-rate prepayments

that inspired us into exploring more advanced inference means of modeling.

We noticed that most authors who attacked the subject, reverted to traditional

econometric models, mainly logistic regressions (Jacobs et al., 2005),(Elul et al.,190

2010),(Agarwal et al., 2011). We further explored the use of non-linear tree-

based ML models in an attempt to improve the predictive powers of such models

to a level that may be conducive to developing early warning systems.

As such, we also scanned the contributions of ML applications to this sub-

ject. While the literature is not very rich in applications of ML methods for195

prepayment forecasting, we were able to identify a few benchmark studies that

inspired our research ambitions. Quinlan (1986) developed the iterative di-

chotomiser 3 (ID3) algorithm, used to generate decision trees processing large

datasets including many attributes. The trees are useful for classification and

regression tasks. Further, new methods like Random Forests were developed.200

Random Forests are a learning method consisting of multiple decision trees re-

lying on the bagging (bagging stands for bootstrap aggregation) concept. The

method was found to be suitable for classification tasks by Breiman (2001). In-

stead of treating each tree in a forest independently, as it is the case for bagging,

more recently developed tree-based methods boost a series of trees by updating205

the version of the previous one. One example for a tree-based gradient boost-

ing algorithm is the LightGBM which we use in our application, developed by

Ke et al. (2017). Previously, Liang & Lin (2014) used Random Forests to seg-

ment mortgagors into different groups before a proportional hazard model is
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employed for predicting the prepayment timing. The results indicated that the210

two-stage process, which includes the Random Forests, predicts mortgage pre-

payments more accurately than the process without the segmentation. Another

study by Guth & Sapsis (2019) compared the prediction performance of tradi-

tional statistical techniques with ML and deep learning methods in the context

of bankruptcy and default events. Traditional methods were outperformed by215

approximately 10% in classification accuracy. Sirignano et al. (2016) unveiled a

highly non-linear relationship between macroeconomic data and the behavior of

120 million mortgages across the US ranging from 1995 to 2014, the prepayment

forecast being improved.

As briefly described above, the literature on prepayment behavior of insti-220

tutional obligors is at this stage rather skimpy with no contributions we could

identify on ML applications to prepayment modeling of fixed-rate institutional

loans. In this paper we aim to explore this subject and discuss our analyses

results.

3. Dataset and Features225

We conducted our research based on a dataset obtained from the European

Data Warehouse (EDW)3. The database we use collects information on loans

that entered the securitization pool between Q1 2012 and Q3 2020. In addition

we collected a set of macroeconomic variables. Our macroeconomic data stems

from the Federal Reserve Bank of St. Louis Economic Dataset (FRED) which230

includes the European Consumer Price Index (Core CPI) - seasonally adjusted

and the Euro area Gross Domestic Product (GDP) from Q1 2011 through Q3

2020. For the same time period we also collected interest rate data from Reuters

Refinitiv. Furthermore, we obtained zero rate curves from the European Central

3The EDW commercializes pan-European loan data in an effort to spearhead loan secu-

ritization in the Euro-currency zone. The project was initiated by the European Central

Bank (also the designer of the data model) in 2011 and was transferred for commercialization

purposes to the EDW in 2012.
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Bank which we used for modelling robustness tests.235

3.1. Data Processing

Since we aim to analyze mainly small and medium-sized enterprise (SME)

loans, we excluded loans belonging to retail customers or financial institutions

such as special purpose vehicles except investment and pension funds. We found

that the loan prepayment behavior for borrowers who belong to commercial240

retailing segments as well as the repair of motor vehicle industry is heavily

idiosyncratic4. After further data cleaning steps due to data quality issues5,

we were left with a pool of 275,078 fixed-rate institutional, mainly SME loans.

These loans represent e 52.160 bn of notional assets. Within this filtered loan

pool, we observe 2,017 partial prepayments summing up to an amount of e245

88 million and 1,101 prepayments at the last payment summing up to e 288

million. We define “partial prepayments” the payments during the lifetime of

loans exceeding those scheduled by the loan amortization indentures and lower

than the remaining outstanding loan amounts. We termed “full prepayments”

the prepayments of the full outstanding loan amount at a minimum of two weeks250

ahead of the contracted maturities.

To compute relative GDP growth rates, we lag up to four quarters to account

for expected delays in prepayment decisions,

∆rel,sGDPt =
GDPt−s+1 −GDPt−s

GDPt−s
,

for s ∈ {1, 2, 3, 4} quarters. Further, we calculated lagged relative CPI changes

similarly for 1, 3, 6, 9, and 12 months and in order to ascertain the overall struc-

4Companies belonging to this industry segment primarily finance the purchasing of motor

vehicles with up to 2-years loans (in most cases fixed-rate) and prepay the loans when they

sell the vehicles - as such, the prepayment decision is conditioned upon exogenous business

factors. As our analysis tries to depict fixed-rate loans prepayment behaviors that are not

linked to idiosyncratic business considerations, we opted to eliminate this sector from our

analysis pool.
5See https://www.ecb.europa.eu/paym/coll/loanlevel/faq/html/index.en.html for addi-

tional known data quality issues.
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ture of the yield curve, we included the 3-months Euribor rates as well as the

5-years EUR interest rate swap rates (5-years IRS) plus their 1-month absolute

differences for the respective periods

∆abs,sit = it−s+1 − it−s,

lagged for s ∈ {1, 3, 6, 9, 12} months, where it is the respective variable in period

t. In these cases we use absolute differences, since for some periods the interest

rates change their signs. We purposely limited the universe of reference interest

rates to one reference short term rate and one long term rate in order to avoid255

overfitting and minimize multicollinearity effects, in full knowledge that changes

across the term structure ladder tend to be heavily intercorrelated.

3.2. Descriptive statistics

Table 1 introduces the non-metric scaled features used for our analysis. We

use six different groups of features, all extracted from the EDW database. The260

borrowers Basel III segmentation classifies the obligors businesses form by num-

ber of employees, turnover or size of the balance sheet (among others)6. Addi-

tionally, the “Nomenclature statistique des activités économiques dans la Com-

munauté européenne” (NACE) code indicates the business area in which the

respective debtor operates. For our analysis, we use the letter granularity of265

the NACE classifications to determine the broader industry segments. Features

defining the loan terms are the interest rate type and the principal payment

frequency, showing different fixed-rate loan types and the timing of the princi-

pal repayment. Moreover, we extracted the quarters out of the timestamp to

control for time and we segmented the original loan size (OLA) of each credit270

in deciles.

Table 2 summarizes the relevant metric scaled variables in the dataset we

used. Listed are the central tendency parameters: the mean and the median

of these variables for the samples that feature a prepayment and samples that

6https://www.ecb.europa.eu/paym/coll/loanlevel/transmission/html/index.en.html
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Table 1: Non-metric variables description.

The table introduces the prepayment distribution among six non-metric features used for our

analysis on the test set. All features are taken from the EDW database. Furthermore, the

data shows the subcategories of each variable. Additional information on how prepayments

are distributed for the original loan size and NACE codes, are reported in Table A.2 and Table

A.1.

Field Name Source Field Definition Prepayment No Prepayment

Borrowers Basel III Segment EDW

Corporate 399 42,049

SME treated as Corporate 523 69,552

Other 12 511,608

No Data 7 680

Principal Payment Frequency EDW

Monthly 668 262,316

Quarterly 106 13,333

Semi annually 24 4,743

Annual 23 318,358

Bullet 116 24,318

Other 5 821

No Data 0 0

Interest Rate Type EDW

Fixed-rate loan (for life) 835 614,960

Fixed with future periodic resets 60 6,420

Fixed-rate loan with compulsory

switch to floating

35 1,044

Capped 9 1,593

Switch Optionality 2 142

Quarters EDW

Q1 324 154,813

Q2 240 189,020

Q3 261 167,960

Q4 116 112,096

Original Loan Size EDW Dummy variable splitting the OLA

into ten deciles.

NACE Code EDW See United Nations (2008)

do not feature a prepayment. For each variable in the dataset, we test whether275

the mean or median differs between the two samples. We note that the two

sub-samples differ significantly for most of the variables suggesting that there

may be subtle patterns we can identify in our subsequent analyses. For exam-

ple, for prepayments we observe a higher mean and median of the contracted

interest rate compared to non-prepaid loans. In addition we observe smaller280

absolute differences for the majority of the used market rate data. This is a

first indication that loans that pay high-interest rates (mainly during periods of

decreasing market rates) tend to exhibit a higher likelihood of prepayment. In
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Table 2: Central tendency tests for metric scaled features on the test set.

We performed the Kruskal-Wallis test to investigate if the prepayment and non-prepayment

samples come from populations with the same median. Further, we used a t-test for the

means of two independent samples of scores. ***, **, * indicate the significance of the dif-

ferences between the prepayment and non-prepayment samples at the 1%, 5% and 10% level.

These statistics apply to the test sample, which includes 941 prepayments and 623,889 non-

prepayments as defined in Section 4.3.

Median Mean

Source Prepayment No Prepayment Difference Prepayment No Prepayment Difference

Current Interest Rate Refinitiv 3.1250 1.1500 −1.9750*** 3.2661 1.4736 −1.7925***

Quarterly GDP (lag 1) FRED .0049 .0053 .0004 −.0015 −.0101 −.0086***

Quarterly GDP (lag 2) FRED .0062 .0063 .0001*** .0029 −.0059 −.0088***

Quarterly GDP (lag 3) FRED .0049 .0063 .0014*** .0056 .0045 −.0011***

Quarterly GDP (lag 4) FRED .0049 .0065 .0016*** .0058 .0071 .0013***

Monthly CPI (lag 1) FRED −.1000 −.1000 .0000*** −.0536 −.0853 −.0317***

Monthly CPI (lag 3) FRED .0000 −.1000 −.1000*** −.0067 −.0600 −.0533***

Monthly CPI (lag 6) FRED .0000 −.1000 −.1000*** −.0150 −.0513 −.0362***

Monthly CPI (lag 9) FRED .0000 .0000 .0000*** .0470 −.0087 −.0557***

Monthly CPI (lag 12) FRED .0000 .0000 .0000*** −.0023 −.0346 −.0322***

3M Euribor (lag 1) Refinitiv −.0020 −.0070 −.0050** −.0102 −.0079 .0023***

3M Euribor (lag 3) Refinitiv −.0010 −.0010 .0000*** −.0010 −.0047 −.0036***

3M Euribor (lag 6) Refinitiv −.0010 .0000 .0010*** −.0144 −.0025 .0119***

3M Euribor (lag 9) Refinitiv .0000 .0000 .0000*** −.0107 −.0065 .0042***

3M Euribor (lag 12) Refinitiv −.0020 .0000 .0020*** −.0502 −.0098 .0405***

5y Eurirs (lag 1) Refinitiv −.0630 −.0470 .0160*** −.0712 −.0222 .0491***

5y Eurirs (lag 3) Refinitiv −.0665 −.0630 .0035*** −.0356 −.0227 .0129***

5y Eurirs (lag 6) Refinitiv −.0065 −.0460 −.0395*** −.0099 −.0201 −.0103***

5y Eurirs (lag 9) Refinitiv .0600 −.0390 −.0990*** .0435 −.0174 −.0610***

5y Eurirs (lag 12) Refinitiv .0043 −.0520 −.0563*** −.0114 −.0366 −.0252***

Section 5 we will confirm this conjecture by showing that those variables exhibit

high features importance in our models.285

Additionally, we use cross tables (A.1 and Table A.2) to investigate the dis-

tribution of the prepayment samples and the non-prepayment samples on the

test set. Each table has three indexes. The first index indicates whether the

samples are prepayments or non-prepayments, the second index shows the decile

of the OLA and the third index exhibits the borrowers Basel III segment the290

respective obligor belongs to. The columns display the NACE codes of each loan

sample. The row and column margins show the respective sums as well as their

relative distribution. Observing the column margins in Table A.1 we note that

more than 50% of loans belong to NACE code A which represents agriculture,
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forestry and the fishing sector. Further, NACE codes C, F, G and N have a share295

between 5% and 10% of the non-prepaid samples7. The share of the remaining

NACE codes is smaller than 3.8%. The rows margins show that firms other

than corporates and SMEs treated as corporates hold between 6% and 10% of

the loans in each of the first eight OLA deciles. The distribution changes in the

last two deciles representing the higher OLAs. We observe more loans taken by300

SMEs treated as corporate (between 4.8% and 6%) while loans take by SMEs

classified as other drop almost below 3%. The loan allocation changes for pre-

paid loans as indicated by Table A.2. Around 28% of the prepayments occur for

NACE code C which represents the manufacturing industry. Other industries

for which we see a high amount of prepayments are G (Wholesale and retail305

trade) with more than 19% as well as F (Construction) and M (professional,

scientific and technical activities) with approximately 8%. Moreover, the rela-

tive row margins show that corporates and SMEs treated as corporate exhibit

a high frequency of prepayments for all OLA deciles. Especially in the deciles

representing high OLAs the two Basel III segments are particular dominant.310

We conject that loans taken by larger firms are more frequently prepaid. We

hypothesize that these firms are more often financially managed by professionals

who react more sensitively to recent market condition developments relevant for

their businesses.

4. Methodology315

We commence the inference analysis by using a logistic regression where the

prepayment is defined as a binary dependent variable whereas the features are

various macro and microeconomic indicators along with obligor and industry

specific data. To ensure that the coefficients represent an economically admis-

7This will be of importance in Section 5, where we will comment that in spite of exhibiting

a large number of observed prepayments, this sector does not seem significant as the volume

of prepayments is relatively modest in absolute terms and also the density of prepayments is

lower than in other NACE cohorts.
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sible inference explanation, we perform a coefficient t-test analysis at a 95%320

confidence level. As such, if a feature coefficient keeps the same sign over the

entire interval, we conclude that it is likely to be representative in direction

(coefficient sign) for the inferenced relationship. We perform the analyses on

both the training and the test samples.

We augment our analyses by the use of non-linear tree-based ML methods325

in an effort to enhance the discriminatory power and accuracy measures of the

logistic regression model deployed. To analyze the direction of effects in the tree-

based models we use SHAP (SHapley Additive exPlanation) values. Lastly, we

analyze the robustness of the parameters of all models deployed.

4.1. Models330

Logistic Regression. We endeavor an attempt to model the prepayment be-

havior of fixed-rate institutional borrowers by means of a logistic regression.

The logistic regression builds a classifier in two steps: fit a conditional proba-

bility model for P (Y = prepayment|X = x), and subsequently classify as one if

P̂ (Y = prepayment|X = x) ≥ 0.5, and zero otherwise (Efron & Hastie, 2016,335

p. 109ff).

Decision Trees. Decision trees are non-linear models that break the input

space into regions and have separate parameters for each region. In the classi-

fication framework, we use the Gini impurity to split the regions. Further, we

tune the hyperparameters for the maximum depth of a tree during our estima-

tion procedure, the minimum sample size for a split, the minimum samples in

a leaf of a tree for a split, and the number of maximum features, where a leaf is

a node in a tree with degree 1.

Random Forests. Random Forests grow many “deep” regression trees to ran-

domized versions of the training data. Here, deep refers to the number of layers

(depth) within the specific trees. Compared to decision trees the main idea is

variance reduction by averaging over the trees. Each tree fits a piecewise con-

stant surface r̂(x) over the domain by recursive partitioning (Efron & Hastie,
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2016, p. 325). The random forest then takes the average

r̂(x) =
1

B

B∑
b=1

r̂b(x),

for any prediction point x and the number of trees B. Since the Random Forest

is composed of multiple decision trees, we tune the same hyperparameters as

for the decision trees.

LightGBM. Boosting methods and Random Forests have a lot in common.

They both represent the fitted model by a sum of regression trees. However,

there are some stark differences. In contrast to regression trees, boosting meth-

ods grow “shallow” trees (built on the residuals) while developing additive mod-

els as “sums of trees”. The basic fitting mechanism is based on bias reduction

compared to variance reduction in the case of Random Forests (Efron & Hastie,

2016, p. 324ff). The main idea is to fit a model generated by the exponential

family of response functions of the form

η(x) =

B∑
b=1

gb(x; θb),

where η is the natural parameter of the conditional distribution Y |X ∼ x, and340

the gb(x; θb) are simple functions of the shallow trees.

Developed by Microsoft Research, Light Gradient Boosting Machines (Light-

GBM) is a gradient boosting framework (Ke et al., 2017). LightGBM was espe-

cially designed for higher efficiency and scalability of boosting to large datasets.

One of the main differences compared to Random Forests is that LightGBM345

grows the tree leaf-wise instead of level-wise. It will choose the leaf with the

maximum loss to grow. Holding the number of leaves fixed, leaf-wise algorithms

tend to achieve higher accuracy as compared to level-wise algorithms (Shi, 2007).

Here, we tune the learning rate, the maximum depth of a tree, the maximum

number of leaves, as well as the number of boosted trees to fit.350

4.2. Model Evaluation Criteria

The model we use for our analysis is

E[yt+1|Ft] ≈ g(Xt, θ), (1)
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where yt+1 ∈ {0, 1} denotes whether we observe a prepayment in period t + 1,

θ ∈ Rp+1 is a vector of weights (hyperparameters) we want to optimize in the

sense of some given metric, Xt ∈ Ft is the matrix of features and Ft is the

filtration. The function g(·) depends on the method applied. In our analyses

we use the ML models Decision Trees, Random Forests and LightGBM. For our

benchmark logistic regression we only use p = 46 features, since we only use one

lagged value (t−1) to avoid multicollinearity. Institutional prepayments are rare

events in the underlying dataset occurring with a probability of approximately 1

in 100. Standard econometric procedures tend to underestimate the probability

of such events in favor of the majority class, which in our case is “no prepayment”

(King & Zeng, 2001). He & Ma (2013) review the algorithms and applications of

imbalanced learning and conclude that traditional performance measures (e.g.,

accuracy) do not serve as good indicators of discriminatory powers. Guth &

Sapsis (2019) suggest to use the F1 score for model evaluation since it depends

on normalized quantities which take into account the highly imbalanced dataset

of prepayments and Wang et al. (2015) use the F1 score for an imbalanced

credit scoring model8. We abide by the cited literature of imbalanced learning

and maximize the F1 score when training the different models

F1 =
True positives

True positives + 1
2 (False positives + False negatives)

.

4.3. Splitting the Dataset

To ensure appropriate data representation, we partitioned our loan pool into

a training data sample encompassing 70% of the loans and the remaining 30%

into a test (validation) sample by stratified sampling. The training and the test355

samples are disjoint. As such, we ensured that the proportion of the original

loan amounts and the number of the prepayments (associated with the last

8An alternative to the F1 score proposed by Velez et al. (2007) is the balanced accuracy.

However, we deem balanced accuracy as suboptimal in the underlying setting since we are

more concerned about detecting positive instances which are achieved by the F1 score rather

than detecting negative instances which are achieved by the balanced accuracy.
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scheduled payment) remain comparable in both datasets. To avoid overfitting

in the training process, we employ a five-fold cross-validation procedure.

5. Key Findings and Analysis Results360

We commence the analysis with the logistic regression, obtaining similar re-

sults to other research publications with respect to the main elasticities, like

McGuire (2008), albeit parametrized for the Euro-currency zone. The key

drivers to prepayments are the borrowers Basel III segment, month-to-month

lagged changes in GDP, month-to-month lagged changes in interest rates (short365

and long term), and the cost of the loan to the borrowers. While the directional

impacts of the features are unsurprising (as evidenced by the coefficients signs

which are stable at a 95% confidence level test), the predictive power of the base

model is weak. The analysis via tree-based non-linear ML methods exhibits su-

perior discriminatory powers. Of the three methods endeavored (Decision Trees,370

Random Forests and LightGBM), the best results obtained on the validation

sample are exhibited by the Random Forest algorithm.

The directional feature sensitivities of the tree methods were obtained via

a SHAP plot on the test sample confirming the coefficient signs of the main

features of the base logistic regression. In addition, the SHAP plots reveal375

some less obvious correlations between features and the target variable such

as the industry classification. It appears that obligors classified as industrial

and manufacturing firms exhibit a significantly higher propensity to prepay as

compared to other industry classes with agricultural firms exhibiting a lower

propensity to prepay. Loans of higher notional amounts, mostly belonging to380

obligors classified as industrial and manufacturing companies, exhibit a higher

likelihood of being prepaid.

5.1. Logistic Regression Results

We obtained similar results to the previous researchers (Richard & Roll,

1989; Jacobs et al., 2005; Cossin & Lu, 2004; McGuire, 2008) with respect to the385

18



main feature elasticities to prepayment probabilities, albeit while parameterizing

our model on Euro-currency institutional loans. The main features driving

prepayments are the short-term and long-term interest rates. 9. As shown

in Table 3, declining interest rates trigger higher probabilities of subsequent

prepayments as evidenced by the negative coefficients of −1.016 and −5.074 for390

the short term and the long-term rates in our full model (1). The coefficients

maintain their negative signs both at a 95% and at a 99% confidence level over

various model specifications.

The more expensive the loan is to the customer, the higher the propensity

of subsequent prepayments. This is evidenced by the positive coefficient of the395

current interest rate feature taking the value of 0.196. The positive sign remains

stable, also at the 99% confidence level as indicated in column 1 of Table 3.

Macroeconomic changes as expressed by the month-to-month changes in

GDP and CPI seem to exhibit at first sight somewhat counterintuitive elastic-

ities to subsequent prepayments – as evidenced by the positive signs of their400

respective coefficients. It appears that improvements in economic conditions

(higher GDP and CPI) are eliciting higher propensities of subsequent prepay-

ments. This seems to conflict with professional managers´ traditional economic

expectations that strong economic quarters align with expectations of increases

in interest rates. Nevertheless, we note that our observation period was between405

2012 and 2020, a period marked by very low rates in the Euro-currency eco-

nomic space with very modest levels of rate changes10. Lastly, for the logistic

regressions, we find no evidence that corporates and SME companies treated as

corporates tend to exhibit a higher propensity to prepay loans as compared to

institutions of other categories. As we will further show in Section 5.2, these410

features will exhibit significant correlations to prepayments under non-linear

ML inference analyses.

9we used the 1 month lagged absolute changes in the 3-months Euribor rate and the 1-

month lagged 5-years IRS rate for the short and long rates, respectively
10See Cochrane (2018) for a macroeconomic discussion of this period.

19



Table 3: Logistic Regression Results.

This table reports the regression output for the analysis of partial and full prepayments for

different model specifications. Estimation of standard errors is heteroscedasticity consistent

according to White (1980). ∗∗∗, ∗∗, ∗ denote significance of the estimated parameter at the

1%, 5%, and 10% level, respectively.

Total Prepayment

(1) (2) (3) (4) (5) (6)

Corporate .1118 .4196 -.0581 .2047 .0461

(.200) (.299) (.163) (.246) (.182)

SME treated as Corporate -.2773 -.0271 -.5111∗∗∗ -.2687 -.4432∗∗

(.194) (.295) (.156) (.241) (.175)

Other -5.5413∗∗∗ -4.9116∗∗∗ -4.9605∗∗∗ -4.8666∗∗∗ -5.8588∗∗∗

(.362) (.363) (.284) (.333) (.312)

Current Interest Rate .1959∗∗∗ .1597∗∗∗ 0.2442∗∗∗ .1911*** .2090∗∗∗

(.012) (.012) (.012) (.012) (.011)

∆rel,1 GDP 1.1240∗ 5.5239∗∗∗ .3008 .9210 .2308 1.2135∗

(.618) (.365) (.587) (.629) (.618) (.668)

∆abs,1 CPI 0.4227∗∗∗ .7338∗∗∗ .4959∗∗∗ .3275∗∗∗ .3933∗∗∗ .3866∗∗∗

(.073) (.062) (.074) (.073) (.073) (.069)

∆abs,1 Euribor 3m -1.0161∗∗ 2.4590∗∗∗ -.4655 -1.1492∗∗∗ -.5061 -1.2613∗∗∗

(.454) (.351) (.465) (.456) (.471) (.454)

∆abs,1 EURIRS 5y -5.0742∗∗∗ -5.800∗∗∗ -3.6542∗∗∗ -4.6016∗∗∗ -3.7524∗∗∗ -5.1526∗∗∗

(.280) (.315) (.231) (.265) (.228) (.266)

Controls for Payment Frequency Y N Y Y Y Y

Controls for NACE Code Y N N Y N Y

Controls for Loan Size Y N Y N N Y

Controls for Timing Y N Y Y Y N

Observations 1,462,612 1,462,612 1,462,612 1,462,612 1,462,612 1,462,612

Pseudo R2 .2772 .0218 0.2572 .2652 .2652 .2717

While the logistic regression classifies almost all samples as non-prepayments

it results in a low number of false positives but also in only 15 correctly classified

prepayments, shown in Table 4. In consequence, Table 5 shows a high accuracy415

and precision but poor recall and F1 scores.

5.2. Results of the Tree-Based Methods

We further augment our analysis by three non-linear tree-based methods,

namely a Decision Tree, a Random Forest and the gradient boosting method

called LightGBM, which are all described in Section 4.1. In the following para-420
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graphs we exhibit the results on the test set by the use of Table 4, and Table

5. The hyperparameter range as well as the optimal parameter resulting from a

grid search algorithm are reported in Appendix B. We also report the training

set results, to provide evidence that we do not overfit the data. Indicated by

comparable error metrics on both sets, we conclude that our models do not suf-425

fer from overfitting. Although, Table 5 shows the performance metrics that can

be derived from confusion matrices given in Table 4, we report both for better

interpretability. The exhibited numbers in both tables result from the model

optimization with respect to the F1 score.

Table 5 exhibits different discriminatory metrics concerning the observa-430

tional errors the models produce on the training and on the test sets. Ob-

serving good results in only one measure is not sufficient which is why they

must be contrasted against each other. The standard approach of measuring

the performance of binary classifiers is accuracy. It is calculated by the ratio

of correct predictions to total sample size. All models achieve high accuracy435

values of around 99% since most observations are correctly classified as “non-

prepayment”. Since the underlying data is highly imbalanced this can hardly be

considered as an appropriate measure. Larger differences occur for the precision

and recall measures.

The precision parameter quantifies the correctly predicted prepayments out440

of all prepayments that are classified as prepayments including the false positive

forecasts. This measure aims to minimize false positive predictions. The Ran-

dom Forest analysis results in a value of 85.98% on the test set. It significantly

outperforms the two other ML methods. The LightGBM method exhibits the

poorest results for this measure and achieves a value of 29.90%.445

The recall measure quantifies the number of the correctly predicted pre-

payments out of all possible prepayments in the dataset. This metric aims to

minimize false negative predictions. The recall parameters values range from

18.17% to 27.42% with the decision tree method exhibiting the lowest value

and the LightGBM method exhibiting the highest value among all methods450

deployed.
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Table 4: Confusion matrices for partial and full prepayments.

True positives denote loans that do not feature a prepayment while the models correctly

predict no prepayments. False positives are loans that are not getting prepaid, while our

models falsely predict a prepayment. False negatives are loans that feature a prepayment,

while our models flag no prepayment. True negatives are the loans where a model correctly

identifies a prepayment. Each of these instances is given for the training as well as the test

set per applied method. All reported numbers result from a model optimization with respect

to the F1 score.

True Negatives False Positives False Negatives True Positives

PANEL A: Logistic Regression

Training Sample 1,460,413 22 2,136 41

Test Sample 623,873 16 926 15

PANEL B: Decision Trees

Training Sample 1,460,286 149 1,750 427

Test Sample 623,819 70 770 171

PANEL C: Random Forest

Training Sample 1,460,376 59 1,510 667

Test Sample 623,852 37 714 227

PANEL D: LightGBM

Training Sample 1,459,557 878 1,426 751

Test Sample 623,284 605 683 258

The two measures exhibit significant differences among the ML models in

our setting. While the maximum difference for the recall measures between

the methods is 9%, the maximum difference for precision measures is 55%.

Since predicting true negatives is deemed as less important in our analysis for455

ascertaining the models performance, we employ the F1 score as an error metric,

see Section 4.2.

The F1 score combines the recall and precision measures by allocating more

weight to minimize false positives and false negatives predictions. As shown in

Table 5, the application of the Random Forest method results in the highest F1460
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Table 5: Performance metrics for partial and full prepayments.

The table summarizes different performance measures for classifying prepayments for partial

and full prepayments. We trained the model according to Section 4.2. All reported numbers

result from a model optimization with respect to the F1 score.

.

Accuracy Precision Recall F1 Log Loss

PANEL A: Logistic Regression

Training Sample .9985 .6508 .0188 .0366 .0510

Test Sample .9985 .4389 .0159 .0309 .0521

PANEL B: Decision Tree

Training Sample .9987 .7413 .1961 .3102 .0448

Test Sample .9987 .7095 .1817 .2893 .0464

PANEL C: Random Forest

Training Sample .9989 .9187 .3064 .4595 .0371

Test Sample .9988 .8598 .2412 .3768 .0415

PANEL D: LightGBM

Training Sample .9984 .4610 .3450 .3946 .0544

Test Sample .9979 .2990 .2742 .2860 .0712

score of 37.68% on the test set. This is approximately 9% higher than the F1

scores for the LightGBM method and the Decision Tree. The table also reports

the log loss measure which ranges between 4.64 % and 7.12% using the F1 score

optimization.

Table 4 shows that each of the three methods is capable of predicting more465

than 170 prepayments correctly, whereby the LightGBM method ranks as best in

true positives predictions with 258 correctly forecasted prepayments, compared

to 227 for the Random Forest. We observe that the Decision Tree and the

Random Forest methods generate a significant number of misclassifications by

not classifying actual prepayments as true prepayments. The Decision Tree470

method results in 770 false negatives, the Random Forest in 714 false negatives,

while the LightGBM exhibit in 683 false negative predictions. Whereby the false
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positive classifications remain also over 600 for LightGBM, we observe that only

70 non-prepayments get classified as prepayments for the Decision Tree and 37

for the Random Forest, reinforcing the meaning illustrated by the differences in475

the F1 scores expressed by the confusion matrix.

In view of the underlying results, we conclude that the tree-based meth-

ods yield better prepayment forecasts than the logistic regression model, as

evidenced by the superior discriminant power statistics, applied to both the

training and the test samples.480

Each of the three methods used is capable of predicting more prepayments

than the logistic regression. While each practical application endeavored on

lender idiosyncratic samples will likely yield different results, we observe that

the Random Forest and the LightGBM methods seem to be superior to other

methods in terms of their predictive powers. Compared to the logistic regression,485

the Random Forest predicts correctly fifteen times more prepayments while

raising slightly fewer false positive signals. While the number of false negative

signals amount to 926 for the logistic regression (also higher for the LightGBM

model), it correctly predicts only 15 prepayments out of 941 in the test set. The

resulting F1 score of 5.21% is considerably lower than the F1 scores of the tree-490

based methods, which stands as the reason for our qualification of the logistic

regression as a poor performing model in the introduction as observable from

Table 4 and Table 5.

We can thus validate the widely applied industry practice of neglecting pre-

payments of fixed-rate institutional loans or, in selected cases (a practice mostly495

applied by wholesale banks), applying a slim haircut to contractual maturities

for transfer pricing and economic attribution analysis purposes when using tra-

ditional statistical models - as we know from anecdotal evidence from industry

experience that applications use logistic regressions in their installed models.

The observation that the Random Forest method generates fewer false posi-500

tives while also generating a considerable number of true positives compared to

other analyses methods would be an encouraging signal for a lender building an

early warning system, as fewer false alarm predictions seem to be occurring. We
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deem the Random Forest configuration to be the overall superior model within

the underlying setting (see Table 4). The LightGBM configuration produces505

more than sixteen times of false positive signals while yielding only compar-

atively few additional true positive signals. The high imbalance between the

considerably more false positives and the slightly more true positives results in

an approximately 9% lower F1 score compared to the Random Forest method

(see Table 5).510

5.3. SHAP Plot

To achieve a more insightful economic interpretation and to increase trans-

parency of the results generated by the ML models, we employ SHAP values

(Lundberg et al., 2018). The SHAP plot represents a bee swarm plot of all

SHAP values grouped by feature. The features are described on the ordinate515

axis. The features plotted higher in the diagram exhibit stronger contributions

to the prediction outcome. The abscissa axis exhibits the impact on the model

output of the respective SHAP values. The stronger the dot color to red, the

higher the SHAP value corresponding to the respective feature and the stronger

the color to blue, the lower the SHAP value.520

In general, the SHAP Plot also reinforces an important set of features along

with their directional elasticities that were obtained via the logistic regression

analysis discussed in 5.1. The SHAP plot in Figure 1 reports the result of

the Random Forest method. It reveals that beyond the expected inverse rela-

tionships between prepayment probabilities and changes in reference rates, we525

discover some other important relationships between target variables and the

probability of early loan prepayments. Like we found in the logistic regression,

high amongst the examined features is the Basel III segment. Referring to Ta-

ble A.2 and to Section 4 we validate our conclusion that corporates and SMEs

treated as corporates exhibit the highest propensity of early prepayments. We530

attempt to explain this result by hypothesizing that many industrial obligors are

managed by professional financial managers who are more likely to seize on the

opportunities presented by advantageous changes in the economic environment
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Figure 1: SHAP value variable importance plot for Random Forest.

The SHAP variable importance plot orders the features according to their significance from

top to bottom, where the top feature is the most significant one. Additionally, the color code

indicates the influence of high variable values (red) or low values (blue) having a positive

relationship (right from zero) or a negative relationship (left side from zero) on the target

variable.

(lower interest rates and increases in GDP growth/inflation rate).

The current interest rate is also a very important predictor. Loans with535

high-interest rates exhibit a large probability of a prepayment or, expressed

differently, more expensive loans tend to exhibit a higher propensity of being

prepaid than cheaper loans. Furthermore, we observe that the absolute changes

of the lagged 5-years Euro swap interest rate as well as the absolute changes
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of the lagged 3-months Euribor represent important features for prepayment540

prediction of institutional fixed-rate loans. Negative relative changes in long-

term rates, proxied by the 5-years swap rate correlate with higher levels of

subsequent prepayments. The same pattern is observable for short-term rates,

proxied by the 1 month lagged 3-months Euribor rates.

Moreover, higher prepayment propensities are consequently associated with545

previous observed changes in macroeconomic indicators. We observe that higher

levels of GDP growth rates and inflation rates represented by the European CPI

index correlate with subsequent higher probabilities of prepayments. We imply

that positive economic trends tend to elicit decisions to deleverage, a relationship

also found in the logistic regression model analysis and aligned with the findings550

of McGuire (2008) albeit in the US markets.

Lastly, we notice a differentiation in prepayment patterns across various

industry segments. As such, companies belonging to the manufacturing industry

(NACE code C) tend to exhibit higher levels of prepayment behavior than the

others. On the other side, companies belonging to agriculture, fishing or forestry555

industry (NACE code A) tend to exhibit very low probabilities of prepayments.

This observation is also supported by A.211.

5.4. Materiality and Timing of Prepayments

In Panel A to Panel C of Figure 2, we show the distribution of the prepay-

ment materiality defined by the Euro amount and in Panel D to Panel F of560

Figure 2 we report the distribution of the timing of the prepayments by use

of histograms. From a materiality perspective, prepayments follow a bimodal

distribution (as evidenced by analyzing the prepayment distribution of the test

set). Partial prepayments tend to represent up to 5% of the outstanding loan

amounts, while full prepayments represent over 90% of the outstanding loan565

11While agricultural loans are higher in absolute numbers of loans, their overall size per

loan is typically lower and the prepayments volumes as a proportion of the overall volume are

far less significant
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Figure 2: Size and timing of prepayments.

The figure shows three histograms concerning the prepayment amount as a percentage of the

original loan amount in the first row. While panel C presents all available prepayments in

the test set, panel A and panel B demonstrate the materiality captured by the logistic regres-

sion and the Random Forest method, respectively. The second row shows three histograms

concerning the prepayment timing as a percentage of the total loan tenor. While panel F cap-

tures all available prepayments in the test set, panel D and panel E indicate the timing of the

prepayments predicted by the logistic regression and the Random Forest method, respectively.

amounts, see Panel C. The Random Forest model is the best capable in predict-

ing the tails of the prepayment distribution. The model stands out by exhibiting

very good prediction performances for full prepayments in the right tail of the

distribution. Approximately three-fourth of all full prepayments are correctly

forecasted (Panel B and Panel C). This finding can be of importance from an570

economic point of view, since large prepayments lead to banks balance sheet

liquidity risks. Panel A shows that the logistic regression method results in an

inferior prediction performance as it correctly predicts very few partial prepay-

ments. From a prepayment timing perspective, prepayments are rather evenly

distributed across the maturities time ladder in the test set (Panel F). We find575
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Table 6: Summary of predicted Euro amount on the test sample for partial and

full prepayments.

This table reports the prediction performance of each method in terms of Euro volumes. While

the first four columns indicate each applied method, the last column reports the numbers for

the entire test set. The first two rows, report the total predicted materiality and the average

predicted materiality respectively. The average predicted materiality is calculated by the

predicted materiality divided by the number of correctly predicted prepayments as shown in

Table 4. The last row, shows the ratio of the total predicted materiality (as given in the first

row of the table) and the total possible amount (as given in the first row of the last column).

Logistic Regression Decision Tree LightGBM Random Forest Full Dataset

(Predicted) Materiality 4,499.08 12,400,148.30 20,777,353.28 12,180,431.22 118,866,232.90

Average (predicted) Materiality 299.94 72,515.49 80,532.38 53,658.29 126,319.06

Ratio of predicted to total Materiality 0.00 10.43 17.48 10.25 -

no evidence of a crowding pattern of prepayments around any particular tenor

region.

As an in-depth analysis of the model performance regrading the materiality pre-

diction, we show in Table 6 the Euro amount of all observed prepayments in

the test set and the predicted amount of each method. The upper section of580

the table reports the total amount as well as the average amount. The average

amount is calculated by the total prepayment materiality in the test set divided

by the 941 prepayments observed in the test set (see Table 4). The lower sec-

tion shows the prediction performance for each applied prediction method in

absolute terms and their average predicted materiality. The average predicted585

materiality is derived by the ratio of the predicted materiality to the number of

true positives of the respective algorithm, given in Table 4. Additionally, the

last row indicates the ratio of the predicted materiality to the total amount of

prepayments. We observe that LightGBM predicts more than 20 million Euro

correctly. This is approximately 18% of the prepaid amount in the test set of590

more than 118 million Euro. Both, the Random Forest and the Decision Tree

predict approximately 12 million Euro out of the 118 million correctly. This

is more than 10% of the observed prepayment volume. Moreover, we observe

that the LightGBM predicts only 8 million Euro more than the Decision Tree
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and 27 million Euro more than the Random Forest on average. Far behind is595

the performance of the logistic regression which predicts less than 4,500 Euros

correctly.

6. Robustness

6.1. Splitting Partial and Full Prepayments

For the analyses presented thus far, we have not distinguished between full600

and partial prepayments within the loan’s lifetime. However, there may be

differences in the reasons for and consequences of prepayments. For example,

following a full prepayment, a creditor may easier refinance her loan at another

bank, which is more difficult in the case of partial prepayments. To analyze

the different behaviors, we run additional analyses similar to Section 5, allow-605

ing for the separation between the two types. Our results indicate that the

ML methods we employed are superior to the logistic regression in predicting

full prepayments and partial prepayments. While the ML methods result in

an F1 score above 57.56% for full prepayments and above 16.28% for partial

prepayments, the logistic regression achieves only a score of 0% and 14.29%,610

respectively on the test set (see Table C.2 and Table C.4). This confirms our

finding from Section 5, that the logistic regression is hardly capable of predict-

ing full prepayments even when we split the dependent variable. Also, very

few partial prepayments are being correctly predicted by the logistic regression.

Since the full prepayments account for the larger amounts which may unexpect-615

edly flow into a bank’s financial statements, this result leads us to conject that

the deployment of tree-based inference methods is more conducive to helping

forecast future large prepayment volumes, an imperative piece of information

for liquidity risk management purposes. We present the complete results of this

analysis differentiating between full and partial prepayments in Appendix C.1.620

6.2. Using strictly the Yield Curve Information

We investigated if the superior performance of the non-linear models com-

pared to the logistic regression is not attributable to overfitting. We evaluate
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the prediction performance on a disjoint test sample to mitigate for this risk.

However, the final ML models use many variables and interactions within each625

tree. To further mitigate for the risk of overfitting, we reduce the model to the

principal components of the yield curve. As discussed in Knez et al. (1994),

Duffie & Kan (1996) or Dai & Singleton (2000) those latent factors are often

called “level”, “slope”, and “curvature”. We performed all analyses with only

the three factors mentioned above and the current interest of the loan. As level630

we used the one year AAA-rated government bonds. Additionally, we com-

pute the slope and the curvature between the one year and ten years AAA-rate

government bond.

The resulting model performs worse than our richer ML model and, per-

haps more importantly, positively tests that institutional prepayments are pre-635

dictable. While the logistic regression is able to predict 15 prepayments correctly

on the test set on the full model it does not predict any prepayment correctly

on the reduced test set as described above. Additionally, we observe that the

ML methods predict only 100 fewer prepayments on the reduced test set when

compared to the full test set. We list the results in Appendix C.4.640

6.3. Alternative Loss Functions

Classic regression approaches to model prepayments use logistic loss because

it most closely relates to minimizing a quadratic cost function (Jacobs et al.,

2005). Logistic loss is also the standard approach currently used in the bank-

ing industry to model prepayments (Sirignano et al., 2016). Replicating the645

approach reveals why most institutions currently refrain from modeling institu-

tional prepayments. As shown in Appendix C.3, the ML models trained with

the logistic loss exhibit poor prediction performances. Such results confirm the

industry practice of expecting either no prepayments as previously mentioned

or applying a haircut of a pre-determined fixed percentage value to all out-650

standing loans. In contrast, our analysis highlights that it is possible to identify

institutional prepayments by non-linear inference models.

Further, we also ran all analyses with balanced accuracy. Some authors

31



like Brodersen et al. (2010) and Zhou & Wang (2012) argue for using balanced

accuracy as an alternative loss function for imbalanced datasets. The results655

for training the ML models with logistic loss do not differ significantly from our

main analysis using the F1 score. Thus, we omit presenting those results in

detail.

6.4. Oversampling the Prepayments during Training

In our primary analysis, we tackled the problem of an imbalanced dataset660

by adjusting the training objective. However, some authors argue that one

can oversample the training dataset, e.g. Gosain & Sardana (2017), so that

the model can “see” a more significant number of prepayments in the minority

group, comprised of prepaid loans. Post oversampling, the resulting model

should, in principle, distinguish between the majority and minority groups on665

a test set following the actual distribution, i.e., without oversampling.

We implemented two standard approaches: first, a naive oversampling method,

which duplicates samples from the minority groups; second, the Synthetic Mi-

nority Oversampling Technique (SMOTE, Chawla et al. (2002)), which gener-

ates new synthetic samples from the minority groups. After oversampling with670

both procedures, we used the logistic loss objective to train the models.

Observing that the SMOTE technique results in a maximum F1 score of

22.22% and the naive oversampling technique in a maximum F1 score of 30.60%,

we note that both are significantly lower than the results derived in the main

analysis as shown in Appendix C.2.675

7. Conclusion

Noticing the imbalance in the academic literature between prepayment mod-

els for consumer and institutional loans, we focused on analyzing the prepay-

ment behaviors of institutional obligors in the European Union. Motivated by

the long periods of very low interest rates in the Eurozone, we addressed the680

issue of modeling fixed-rate institutional loan prepayments which have exac-

erbated the problems of poor European commercial banks profitability during
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the last decade. We examined 275,078 fixed-rate institutional loans containing

some 3,118 total and partial principal prepayments. The loans were obtained

from a database designed by the European Central Bank and commercialized by685

EDW. We identified approximately one-third of the full or partial prepayments

on the test set and examined prepayment behavior against a set of 59 specific

and macroeconomic variables. We found that logistic regressions do not appro-

priately discriminate prepayments in a way that would allow for building sturdy

early warning systems. However, tree-based nonlinear methods tend to exhibit690

superior discriminant power statistics, enabling early warning systems capable

of better-predicting prepayments of fixed-rate institutional loans. The main fea-

tures driving prepayments are the lagged absolute changes in reference rates as

drops in reference rates correlate with a higher probability of subsequent prepay-

ments, the Basel III Segment where SME borrowers treated as corporates exhibit695

the highest propensity to prepay, GDP and CPI growth rates. In addition, we

found that obligors belonging to the manufacturing segment exhibit the highest

likelihood of prepayments while companies in the agricultural/forestry/fishing

sector exhibit the lowest propensity to prepay. While we could find no dis-

tinguishable pattern in prepayment timing, we noticed a bimodal distribution700

in prepayment sizes with the overwhelming prepayment amounts being of full

prepaid principal. We encourage commercial lenders to explore the deployment

of nonlinear tree-based methods trained on their own specific datasets in an

attempt to develop behavioral models for fixed-rate institutional prepayments

as recommended by the European Banking Authority and the Basel III forum705

under “Interest Rate Risk in the Banking Books” and attempt to build early

warning mechanisms better capable of forecasting institutional fixed-rate loan

prepayments.

Perhaps more important is the observation that non-linear tree-based ML

methods are capable of discovering less obvious explanatory features to insti-710

tutional loan prepayments, which is conducive to conclude that institutional

borrowers, especially those belonging to the manufacturing sector, tend to ex-

hibit predictable behavioral patterns of loan prepayments. We encourage fellow
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researchers to further explore such behavioral models by deploying more ad-

vanced pattern recognition algorithms, like deep learning methods.715
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Appendix A. Additional Descriptive Statistics

Table A.1: Non-prepayment cross table.

This table reports the absolute distribution of the non-prepayment samples. The table has a

two-fold index. The first index shows the deciles the original loan amount of the respective

loan belongs to. The second index is the borrowers Basel III segmentation of the sample. The

columns of the table display the NACE code segmentation.

NACE code A B C D E F G H I J K L M N O P Q R S T U Z All Relative

Prepaid OLA Decile Borrowers Basel III Segment

No 1 Corporate 1 0 26 0 0 12 14 0 1 0 0 0 3 4 0 0 8 0 0 0 0 20 89 .180

SME treated as corporate 4 0 21 0 0 15 37 2 6 5 0 8 9 5 1 4 4 2 0 0 0 59 182 .2209

Other 6322 0 115 4 5 182 234 24 82 14 0 105 121 672 0 26 32 16 51 0 0 0 8005 9.7157

N/A 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 3 .0036

2 Corporate 5 1 22 1 0 32 29 3 3 1 0 2 9 9 0 1 7 1 2 0 0 23 151 .1833

SME treated as corporate 9 0 43 1 1 31 74 8 43 15 0 8 14 31 1 3 11 6 13 0 0 95 407 .4940

Other 5732 3 143 2 7 295 315 42 110 15 0 110 142 593 0 18 30 25 50 0 0 0 7632 9.2630

N/A 1 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 5 .0061

3 Corporate 2 0 66 0 3 58 66 4 1 2 0 0 10 24 0 1 13 0 2 0 0 42 294 .3568

SME treated as corporate 5 0 68 0 0 69 112 16 43 12 2 6 22 31 0 1 8 10 21 0 0 120 546 .6627

Other 5487 0 192 8 3 397 355 68 114 15 0 122 159 514 0 29 34 20 56 0 0 0 7573 9.1914

N/A 1 0 2 0 0 1 2 2 0 0 0 0 0 1 0 0 0 0 0 0 0 3 12 .0146

4 Corporate 4 1 61 0 4 82 82 16 8 0 0 3 11 20 0 0 7 1 1 0 0 31 332 .4030

SME treated as corporate 9 0 83 0 3 75 151 20 64 9 0 19 41 26 0 4 7 8 15 0 0 118 652 .7913

Other 4713 2 198 8 8 514 417 82 113 19 0 140 193 511 0 15 65 28 41 0 0 0 7067 8.5773

N/A 0 0 3 0 0 0 3 2 3 0 0 2 1 0 0 0 0 0 0 0 0 1 15 .0182

5 Corporate 5 0 67 0 2 88 113 43 6 2 0 6 20 31 0 2 11 4 2 0 0 36 438 .5316

SME treated as corporate 10 0 96 1 3 74 176 45 60 10 0 15 51 44 0 5 20 4 24 0 0 132 770 .9346

Other 4868 0 222 8 5 462 378 101 107 27 0 134 168 469 0 20 53 23 44 1 0 0 7090 8.6052

N/A 0 0 2 0 0 3 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 4 15 .0182

6 Corporate 14 2 116 2 5 68 111 42 9 5 0 7 25 24 0 3 12 1 3 0 0 71 520 .6311

SME treated as corporate 13 2 134 0 6 105 268 44 90 23 2 22 59 46 0 10 25 12 26 0 0 205 1092 1.3254

Other 4936 5 227 12 8 353 440 120 143 30 0 187 183 299 1 14 41 33 50 0 0 2 7084 8.5079

N/A 0 0 4 0 0 2 4 1 2 0 0 0 1 0 0 0 1 0 1 0 0 1 17 .0206

7 Corporate 16 1 120 0 1 83 128 54 17 10 0 24 28 32 0 2 15 3 3 0 0 81 618 .7501

SME treated as corporate 43 4 207 8 8 134 329 57 96 41 3 38 82 45 0 6 36 15 19 0 0 221 1392 1.66895

Other 4373 4 210 8 10 237 441 106 136 22 0 226 162 206 0 8 54 20 55 0 0 1 6279 7.6209

N/A 0 0 1 0 0 2 10 1 2 0 0 1 2 0 0 0 1 0 1 0 0 1 22 .0267

8 Corporate 30 4 159 2 7 89 222 112 22 12 0 40 42 44 0 9 14 4 5 0 0 104 921 1.1178

SME treated as corporate 66 2 316 12 16 124 426 143 82 48 3 55 105 62 0 10 35 16 17 0 0 301 1839 2.2320

Other 3307 3 227 15 12 165 354 115 100 34 0 266 157 162 1 8 49 13 29 0 0 4 5021 6.0940

N/A 0 0 8 0 0 2 6 1 4 0 0 1 0 0 0 1 1 1 1 0 0 1 27 .0328

9 Corporate 56 20 388 8 16 114 345 102 39 35 0 140 67 69 0 24 27 10 5 0 0 173 1638 1.9881

SME treated as corporate 135 20 891 32 30 243 1033 165 103 88 6 127 223 138 0 11 112 37 38 1 2 573 4008 4.8645

Other 906 1 254 69 9 105 300 92 72 42 0 381 147 74 4 3 86 14 14 0 0 7 2580 3.1314

N/A 1 0 3 0 1 3 3 0 2 0 0 0 0 2 0 0 0 0 0 0 0 0 15 .0182

10 Corporate 38 9 514 9 32 59 284 75 41 38 0 258 130 72 0 6 40 7 5 0 3 119 1739 2.1106

SME treated as corporate 86 28 1312 59 62 172 1508 181 108 110 5 186 510 151 1 6 66 17 28 0 0 281 4877 5.9193

Other 22 4 164 121 10 91 163 43 20 12 0 482 111 21 97 1 35 10 8 0 0 3 1418 1.7210

N/A 0 0 4 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 7 .0085

All 41220 116 6689 390 278 4542 8936 1933 1853 697 21 3123 3011 4432 106 251 960 361 632 2 5 2834 82392

Relative 50.0291 .1408 8.1185 .4733 .3374 5.5127 10.8457 2.3461 2.2490 .8460 .0255 3.7904 3.6545 5.3792 .1287 .3046 1.1652 .4381 .7671 0.0024 0.0061 3.4397

38



Table A.2: Prepayment cross table.

This table reports the absolute distribution of the prepayment samples. The table has a two-

fold index. The first index shows the deciles the original loan amount of the respective loan

belongs to. The second index is the borrowers Basel III segmentation of the sample. The

columns of the table display the NACE code segmentation.

NACE Code A B C D E F G H I J K L M N O P Q R S Z All Relative

Prepaid OLA Decile Borrowers Basel III Segment

Yes 1 Corporate 0 0 16 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 18 1.9129

SME treated as corporate 0 0 2 0 0 2 9 1 2 2 0 1 1 0 0 1 2 2 0 1 26 2.7630

Other 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 2 0.2125

N/A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .0000

2 Corporate 0 0 16 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 19 2.0191

SME treated as corporate 1 0 2 0 0 1 5 2 1 1 0 3 2 2 1 0 0 0 0 0 21 2.2317

Other 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .0000

N/A 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 .1063

3 Corporate 0 0 29 0 0 4 6 0 0 1 0 0 1 1 0 0 0 0 1 0 43 4.5696

SME treated as corporate 5 0 5 0 0 3 8 4 1 0 1 0 3 2 0 2 2 0 1 5 42 4.4633

Other 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 .1063

N/A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .0000

4 Corporate 0 0 5 0 0 0 5 0 0 0 0 1 1 4 0 0 0 0 0 0 16 1,7003

SME treated as corporate 1 0 4 0 0 10 11 2 5 1 0 5 5 1 0 0 0 0 2 0 47 4.9947

Other 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .0000

N/A 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 .1063

5 Corporate 0 0 14 0 0 2 3 0 0 0 0 1 0 2 0 0 0 2 0 0 24 2.5505

SME treated as corporate 1 0 5 0 0 2 9 3 1 0 0 0 7 7 0 0 5 0 0 0 40 4.2508

Other 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .0000

N/A 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 .1063

6 Corporate 1 0 19 0 0 1 3 1 0 0 0 1 0 1 0 0 0 1 0 0 28 2.9756

SME treated as corporate 3 0 6 0 0 7 15 5 4 0 1 4 10 1 0 1 2 0 0 0 59 6.2699

Other 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 .1063

N/A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .0000

7 Corporate 0 0 3 0 0 5 1 3 0 1 0 2 1 4 0 0 0 0 0 0 20 2.1254

SME treated as corporate 1 0 13 1 0 9 8 3 3 1 1 1 10 3 0 0 3 0 0 0 57 6.0574

Other 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 .1063

N/A 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 .1063

8 Corporate 0 0 11 0 0 8 3 4 1 0 0 4 4 0 0 0 0 1 0 1 37 3.9320

SME treated as corporate 5 0 5 0 0 2 10 5 3 2 0 2 6 4 0 0 2 0 2 0 48 5.1010

Other 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 3 .3188

N/A 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 .1063

9 Corporate 1 0 47 0 2 8 26 4 3 2 0 5 5 7 0 0 0 1 1 0 112 11.9022

SME treated as corporate 13 0 16 0 0 6 23 6 3 4 1 13 5 3 0 2 13 0 3 0 111 11.7960

Other 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 2 .2125

N/A 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 .1063

10 Corporate 2 0 31 2 1 3 18 3 6 2 0 2 9 3 0 0 0 0 0 0 82 8.7141

SME treated as corporate 9 1 13 0 1 3 14 1 2 1 0 9 10 2 0 0 4 0 2 0 72 7.6514

Other 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 2 .2125

N/A 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 .2125

All 47 1 264 3 4 80 182 47 38 18 4 57 81 48 1 6 33 8 12 7 941 .1063

Relative 4.9947 .1063 28.0553 .3188 .4251 8.5016 19.3411 4.9947 4.0383 1.9129 .4251 6.0574 8.6079 5.1010 .1063 .6376 3.5069 .8502 1.2752 .7439
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Appendix B. Hyperparameter Tuning

Table B.1: Hyperparameter Tuning via Grid Search.

The first three columns of the table show the model parameters as well as the parameter sets

applied to each classifier. The last column indicates the optimal parameter chosen by the

model via grid search for the main analysis.

Classifier Parameter Parameter Range Optimal Parameter

Logistic Regression

Random Forest

max tree depth {4,10,20,40} 40

min sample split {2,4,10} 2

min sample leaf {2,4,8} 2

max features {auto, sqrt, log2} auto

Decision Tree

max tree depth {4,10,20,40} 40

min sample split {2,4,10} 2

min sample leaf {2,4,8} 8

max features {auto, sqrt, log2} auto

LightGBM

max tree depth {4,10,20,40} 40

number of boosted trees {50,100,200} 100

max tree leaf {11,31,61} 61

learning rate {0.01,0.1,0.3} 0.1
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Appendix C. Robustness820

Appendix C.1. All Tables for the Split between Full and Partial Prepayments

Table C.1: Confusion matrices for full prepayments.

True positives denote loans which do not feature a prepayment and where our models correctly

predict no prepayments. False positives are loans which are not getting prepaid, but where our

models falsely predict a prepayment. False negatives are loans which feature a prepayment,

but where our models flag no prepayment. True negatives are the loans were a model correctly

identifies a prepayment.

True Negatives False Positives False Negatives True Positives

PANEL A: Logistic Regression

Training Sample 1,461,839 0 773 0

Test Sample 624,501 1 328 0

PANEL B: Decision Trees

Training Sample 1,461,721 118 407 366

Test Sample 624,457 45 173 155

PANEL C: Random Forest

Training Sample 1,461,819 20 456 317

Test Sample 624,491 11 191 137

PANEL D: LightGBM

Training Sample 1,461,744 95 384 389

Test Sample 624,460 42 164 164
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Table C.2: Performance metrics for full prepayments.

The table summarizes different performance measures for the classification of prepayments.

We trained the model according to Section 4.2.

Accuracy Precision Recall F1 Log Loss

PANEL A: Logistic Regression

Training Sample .9995 .0000 .0000 .0000 .0183

Test Sample .9995 .0000 .0000 .0000 .0182

PANEL B: Decision Trees

Training Sample .9996 .75626 .4735 .5823 .0124

Test Sample .9997 .7750 .4726 .5871 .0121

PANEL C: Random Forest

Training Sample .9997 .9407 .4101 .5712 .0112

Test Sample .9997 .9257 .4177 .5756 .0112

PANEL D: LightGBM

Training Sample .9997 .8037 .5032 .6189 .0113

Test Sample .9997 .7961 .5000 .6142 .0114
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Table C.3: Confusion matrices for partial prepayments.

True positives denote loans which do not feature a prepayment and where our models correctly

predict no prepayments. False positives are loans which are not getting prepaid, but where our

models falsely predict a prepayment. False negatives are loans which feature a prepayment,

but where our models flag no prepayment. True negatives are the loans were a model correctly

identifies a prepayment.

True Negatives False Positives False Negatives True Positives

PANEL A: Logistic Regression

Training Sample 1,461,181 27 1,284 120

Test Sample 624,206 11 565 48

PANEL B: Decision Trees

Training Sample 1,461,115 93 1,187 217

Test Sample 624,164 53 554 59

PANEL C: Random Forest

Training Sample 1,461,188 20 1,117 287

Test Sample 624,191 26 543 70

PANEL D: LightGBM

Training Sample 1,461,070 138 1,96 209

Test Sample 624,128 89 540 73
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Table C.4: Performance metrics for partial prepayments.

The table summarizes different performance measures for the classification of prepayments.

We trained the model according to Section 4.2.

Accuracy Precision Recall F1 Log Loss

PANEL A: Logistic Regression

Training Sample .9991 .8163 .0855 .1547 .0310

Test Sample .9991 .8136 .0783 .1429 .0318

PANEL B: Decision Trees

Training Sample .9991 .7000 .1546 .2532 .0302

Test Sample .9990 .5268 .0962 .1628 .0336

PANEL C: Random Forest

Training Sample .9992 .9349 .2044 .3355 .0268

Test Sample .9991 .7292 .1142 .1975 .0315

PANEL D: LightGBM

Training Sample .9991 .6023 .1489 .2387 .0315

Test Sample .9990 .4506 .1191 .1884 .0348
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Appendix C.2. Using Oversampling Techniques for the Minority Class

Table C.5: Confusion matrices for the SMOTE oversampling.

True positives denote loans which do not feature a prepayment and where our models correctly

predict no prepayments. False positives are loans which are not getting prepaid, but where our

models falsely predict a prepayment. False negatives are loans which feature a prepayment,

but where our models flag no prepayment. True negatives are the loans were a model correctly

identifies a prepayment.

True Negatives False Positives False Negatives True Positives

PANEL A: Logistic Regression

Training Sample 1,291,579 168,856 44,045 1,416,390

Test Sample 551,995 71,894 117 824

PANEL B: Decision Trees

Training Sample 1,444,130 16,305 2,435 1,458,000

Test Sample 616,666 7,223 379 562

PANEL C: Random Forest

Training Sample 1,452,660 7,775 521 1,459,914

Test Sample 620,296 3,593 422 519

PANEL D: LightGBM

Training Sample 1,453,906 6,529 846 1,459,589

Test Sample 620,822 3,067 440 501
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Table C.6: Performance metrics for the SMOTE oversampling.

The table summarizes different performance measures for the classification of prepayments.

We trained the model according to Section 4.2.

Accuracy Precision Recall F1 Log Loss

PANEL A: Logistic Regression

Training Sample .9271 .8935 .9698 .9301 2.5176

Test Sample .8848 .0113 .8757 .0224 3.9806

PANEL B: Decision Tree

Training Sample .9936 .9889 .9983 .9936 .2216

Test Sample .9878 .0722 .5972 .1288 .4202

PANEL C: Random Forest

Training Sample .9972 .9947 .9996 .9972 .0981

Test Sample .9936 .1262 .5515 .2054 .2219

PANEL D: LightGBM

Training Sample .9975 .9955 .9994 .9975 .0872

Test Sample .9944 .1404 .5324 .2222 .1939
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Table C.7: Confusion matrices for the naive oversampling.

True positives denote loans which do not feature a prepayment and where our models correctly

predict no prepayments. False positives are loans which are not getting prepaid, but where our

models falsely predict a prepayment. False negatives are loans which feature a prepayment,

but where our models flag no prepayment. True negatives are the loans were a model correctly

identifies a prepayment.

True Negatives False Positives False Negatives True Positives

PANEL A: Logistic Regression

Training Sample 1,241,494 218,941 53,361 1,407,074

Test Sample 530,975 92,914 41 900

PANEL B: Decision Trees

Training Sample 1,442,040 18,395 0 1,460,435

Test Sample 15,790 8,099 401 540

PANEL C: Random Forest

Training Sample 1,456,325 4,110 0 1,460,435

Test Sample 21,852 2,037 403 538

PANEL D: LightGBM

Training Sample 1,455,644 4,791 0 1,460,435

Test Sample 621,236 2,653 400 541
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Table C.8: Performance metrics for the naive oversampling.

The table summarizes different performance measures for the classification of prepayments.

We trained the model according to Section 4.2.

Accuracy Precision Recall F1 Log Loss

PANEL A: Logistic Regression

Training Sample .9068 .8654 .9635 .9118 3.2200

Test Sample .8512 .0096 .9564 .0190 5.1384

PANEL B: Decision Tree

Training Sample .9937 .9876 1.0000 .9937 .2175

Test Sample .9864 .0625 .5739 .1127 .4699

PANEL C: Random Forest

Training Sample .9986 .9972 1.0000 .9986 .0486

Test Sample .9961 .2089 .5717 .3060 .1349

PANEL D: LightGBM

Training Sample .9984 .9967 1.0000 .9984 .0567

Test Sample .9951 .1694 .5749 .2617 .1688
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Appendix C.3. Using Logistic Loss as the Cost Function

Table C.9: Confusion matrices for the logistic loss.

True positives denote loans which do not feature a prepayment and where our models correctly

predict no prepayments. False positives are loans which are not getting prepaid, but where our

models falsely predict a prepayment. False negatives are loans which feature a prepayment,

but where our models flag no prepayment. True negatives are the loans were a model correctly

identifies a prepayment.

True Negatives False Positives False Negatives True Positives

PANEL B: Decision Trees

Training Sample 1,460,435 0 2,177 0

Test Sample 623,889 0 941 0

PANEL C: Random Forest

Training Sample 1,460,428 7 2,037 140

Test Sample 623,885 4 881 60

PANEL D: LightGBM

Training Sample 1,460,389 46 1,865 312

Test Sample 623,868 21 817 124
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Table C.10: Performance metrics for the logisitc loss.

The table summarizes different performance measures for the classification of prepayments.

We trained the model according to Section 4.2.

PANEL B: Decision Tree

Training Sample .9985 .0000 .0000 .0000 .0514

Test Sample .9985 .0000 .0000 .0000 .0520

PANEL C: Random Forest

Training Sample .9986 .9524 .0643 .1205 .0483

Test Sample .9986 .9375 .0638 .1194 .0489

PANEL D: LightGBM

Training Sample .9987 .8715 .1433 .2462 .0451

Test Sample .9987 .8552 .1318 .2284 .0463

50



Appendix C.4. Using the Slope and Curvature of the Yield Curve

Table C.11: Confusion matrices for using the yield curve information.

True positives denote loans which do not feature a prepayment and where our models correctly

predict no prepayments. False positives are loans which are not getting prepaid, but where our

models falsely predict a prepayment. False negatives are loans which feature a prepayment,

but where our models flag no prepayment. True negatives are the loans were a model correctly

identifies a prepayment.

True Negatives False Positives False Negatives True Positives

PANEL A: Logistic Regression

Training Sample 1,460,435 0 2,177 0

Test Sample 623,889 0 941 0

PANEL B: Decision Trees

Training Sample 1,460,351 84 1,882 295

Test Sample 623,848 41 834 107

PANEL C: Random Forest

Training Sample 1,460,347 88 1,853 324

Test Sample 623,841 48 835 106

PANEL D: LightGBM

Training Sample 1,459,990 445 2,005 172

Test Sample 623,704 185 860 81
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Table C.12: Performance metrics for using the yield curve information.

The table summarizes different performance measures for the classification of prepayments.

We trained the model according to Section 4.2.

Accuracy Precision Recall F1 Log Loss

PANEL A: Logistic Regression

Training Sample .9985 .0000 .0000 .0000 .0514

Test Sample .9985 .0000 .0000 .0000 .0520

PANEL B: Decision Tree

Training Sample .9987 .7784 .1355 .2308 .0464

Test Sample .9986 .7230 .1137 .1965 .0484

PANEL C: Random Forest

Training Sample .9987 .7864 .1488 .2503 .0458

Test Sample .9986 .6883 .1126 .1936 .0488

PANEL D: LightGBM

Training Sample .9983 .2788 .0790 .1231 .0579

Test Sample .9983 .3045 .0861 .1342 .0578
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